Improving Particle Swarm Optimization using Fuzzy Logic
نویسندگان
چکیده
Particle Swarm Optimization is a population based optimization technique that based on probability rules. In this technique each particle moves toward their best individual and group experience had occurred. Fundamental problems of a standard PSO algorithm are fall into local optimum trap and the low speed of the convergence. One of the methods to solve these problems is to combine PSO algorithm with other methods such as fuzzy logic and genetic algorithms. In this paper two PSO algorithm based on fuzzy logic are proposed. The proposed algorithms try to solve the above mentioned problems. For evaluation purpose, the proposed algorithms are tested on number of standard optimization functions. The results of experimentations have shown the superiority of the proposed algorithm over standard PSO.
منابع مشابه
Enhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...
متن کاملFrequency Control of an Islanded Microgrid based on Intelligent Control of Demand Response using Fuzzy Logic and Particle Swarm Optimization (PSO) Algorithm
Due to the increasing penetration of renewable energies in the power system, the frequency control problem has attracted more attention, while the traditional control methods are not capable of regulating the frequency and securing the stability of the system. In smart grids, demand response as the frequency control tool reduces the dependence on spinning reserve and high cost controllers. In a...
متن کاملUsing Swarm Intelligence for Improving Accuracy of Fuzzy Classifiers
This paper discusses a method for improving accuracy of fuzzy-rule-based classifiers using particle swarm optimization (PSO). Two different fuzzy classifiers are considered and optimized. The first classifier is based on Mamdani fuzzy inference system (M_PSO fuzzy classifier). The second classifier is based on TakagiSugeno fuzzy inference system (TS_PSO fuzzy classifier). The parameters of the ...
متن کاملAdaptive particularly tunable fuzzy particle swarm optimization algorithm
Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that owes much of its allure to its simplicity and its high effectiveness in solving sophisticated optimization problems. However, since the performance of the standard PSO is prone to being trapped in local extrema, abundant variants of PSO have been proposed by far. For instance, Fuzzy Adaptive PSO (FAPSO) algorithms ...
متن کاملBio-Inspired Algorithms for Fuzzy Rule-Based Systems
In this chapter we focus on three bio-inspired algorithms and their combinations with fuzzy rule based systems. Rule Based systems are widely being used in decision making, control systems and forecasting. In the real world, much of the knowledge is imprecise and ambiguous but fuzzy logic provides for systems better presentations of the knowledge, which is often expressed in terms of the natura...
متن کاملDesigning an adaptive fuzzy control for robot manipulators using PSO
This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...
متن کامل